An Interview with Dr. John Luginsland: The Plasma & Electro-Energetic Physics Program Manager


We had a chance to sit down with Dr. Luginsland recently to learn about his program and the cool physics research he’s funding. As the manager for the Plasma & Electro- Energetic Physics Program, he oversees a diverse portfolio of AFOSR funded programs and finds the best of the best to fund.

Dr. John Luginsland, AFOSR Program Manager for Plasma & Electro Energetic Physics Position: AFOSR Program Manager
Program: Plasma & Electro-Energetic Physics
Years with AFOSR:  2 years, 7 Months
Society Memberships: The Institute of Electrical and Electronics Engineers (IEEE) – Nuclear and Plasma Science Society, American Physical Society  (APS) – Division of Plasma Physics, Society of Industrial and Applied Mathematics
Favorite Websites: Slashdot, MITs Technology Review, APS – Physics 
Presentations: Video of Dr. Luginsland’s Spring Review presentation.

What brought you to AFOSR?
I’ve been with AFOSR since December of 2009 but I like to say, “I’ve always worked for AFOSR.” Because actually my graduate work at the University of Michigan was funded by AFOSR. Then AFOSR funded my post doc through the National Research Council (NRC) post doc program at the Air Force Research Laboratory based at Kirtland Air Force Base. After that, I transitioned to a staff member of the Directed Energy Directorate of AFRL and worked in a lab that received basic research funding for a number of years from AFOSR. Later I went to industry for a number of years and in 2009 when my predecessor at AFOSR retired, the AFOSR Director at that time, Dr. Brendan Godfrey suggested I apply for the job and here I am.

How do you think AFOSR is different from other basic research organizations?
What I really like about AFOSR is that there’s actually a real tension between two missions. First and foremost, we’re a basic science organization so we find the best science we can and fund it. At the same time, we’re a mission research organization because we work for the Air Force so we have to simultaneously look for the very best science we can fund and also answer the mail, if you will, for the Air Force in terms of technology that will help the Air Force going forward. And I think that actually having to answer both of those questions simultaneously gives a degree of focus that the other funding agencies don’t have.

You’re the Plasma and Electro-Energetic Program Manager. What is plasma?
Plasma is the fourth state of matter: if you heat a solid you get a liquid, if you heat a liquid you get a gas, if you heat a gas you get plasma. Actually plasma is the most ubiquitous state of matter in the entire universe – 99% of the universe is in the plasma state, just not the part we live in here on earth.

How does electro-energetics fit in?
It takes energy to get into the plasma state, so often times we do that with electrical energy to go from the solid, to the liquid, to the gas, to the plasma.

My program is fundamentally looking at how do we make plasmas, how do we make them in energy efficient ways and then once you got something in the plasma state what can you uniquely do in that state that you can’t do in other areas.

Could you give us examples of how your program is benefiting the Air Force?
One major area that we fund is called directed energy technology. Plasma will let you access or make electromagnetic waves. So one big thing that we do is plasma physics that leads to radar sources and other sources of coherent radiation. Really high-powered electromagnetic sources actually create a plasma and then draws energy out of that plasma to make electromagnetic waves for radar – picking up airplanes, for doing electronic warfare, doing high-powered, long-range communications. All of that is based to some degree on plasma physics.

The other big exciting thing that we’re working on right now is trying to find good ways to decontaminate water. So as it turns out Fairfax County [VA] has two facilities that produce ozone and they do it through a chemical means. They do this at a city-block-sized facility and it actually is what purifies the water that we drink in Fairfax County. What we’re trying to do is actually shrink that block-sized facility into something that’s basically truck-sized and we’re using a plasma to do that. And this plasma, which is energetic in a way that chemicals aren’t, lets you make ozone much more efficiently and thereby use that ozone to clean up water and things like that. So you can imagine this is portable and could go into a forward operating base scenario, whereas the block-sized monstrosity can’t.

What direction do you see your program going in in the future?
The really exciting area that I think is starting to happen is that we’re starting to look at very small plasmas and what happens then is we start adding not just classical physics that we’re used to in the plasma physics community but start really pulling in quantum mechanics. That changes the physics associated with the plasmas and actually makes them quite a bit easier to make. So it takes less energy to make but we’re still getting all the benefits of plasma but it’s not requiring a block-sized thing to do it. We’re starting to do it in very small packages.

What is your process and timeline for choosing proposals?
So I always think it’s good for people to email me and have a quick email discussion sort of at the beginning of the calendar year after they look at the Broad Agency Announcement for details about what we’re looking to fund.

I look to get white papers in the late spring early summer say the May/June time period. You can submit them online.

White papers should be three to five pages long. I’d like there to be at least an estimate of the level of effort but for the most part what I’m looking for is what the unique science is you’re trying to do. What’s unique? What are you bringing to the portfolio that hasn’t been there before?

And then after that, I typically try and give feedback within a month.

I like to receive full proposals in the late summer – August/September – to try to get them in before the fiscal year rolls over in October.

I make funding decisions very early in the fiscal year – October/November.

Have a question for Dr. Luginsland? Please leave it in the comments below.

Making Marvelous Materials – Who is Air Force Basic Research Video

With the advent of the jet age in the 1940s and 50s the velocity of aircraft was fast approaching the speed of sound making it readily apparent that construction techniques for jet aircraft would require significant changes to meet new and unforeseen operational demands.

Since its founding in 1951 AFOSR has maintained an active research program in aircraft structures and materials. This program must constantly evolve addressing revolutionary advances in aerodynamics.

In this video, meet materials researchers AFOSR is funding to develop new nanomaterials that will have revolutionary impacts on the future Air Force.

Shaping Computer Science – Who is Air Force Basic Research Video

Today’s AFOSR funded computer science research takes form in many different programs at public and private research facilities throughout the world.

In this video, you’ll be introduced to these researchers doing revolutionary computer research – from Dr. Nandini Iyer’s work to help pilots effectively process complex acoustic scenes to UCSB Prof David Awschalom’s work to build a new type of electronics technology through spintronics and quantum computing research.

Knighthoods for Nobel-winning Stronger than Steel Graphene Pioneers

We have some exciting news to share!

Two Nobel laureates funded by AFOSR, involved in the creation and isolation of graphene, a sheet of carbon just one atom thick, have received British knighthoods from the Queen of England.

Professors Andre Geim and Konstantin Novoselov, from the University of Manchester, Great Britain, won the 2010 Nobel Prize in Physics for their pioneering research in graphene, which they first isolated in their seminal work of 2004 and 2005. 

AFOSR’s European Office of Aerospace Research (EOARD) has funded their work to further the promise of graphene since 2008.  And now they add knighthoods to the honors as bestowed by the Queen’s New Year Honours List 2012.

Geim and Novoselov demonstrated graphene’s remarkable qualities as the thinnest material in the universe and quite possibly the strongest ever measured.  In addition to those amazing characteristics, its charge carriers—that is, the electrons that transport the electric charge in an induced electric current—exhibited the highest intrinsic mobility with zero effective mass, and can travel micron distances without scattering at room temperature. 

Graphene boasts multiple record electric and mechanical properties including the highest sustainable electric current, one million times copper; the highest thermal conductivity and mechanical strength both exceeding diamond, while at the same time it’s the thinnest material possible at one atom thick, and still stretchable, flexible, and impermeable. 

Some scientists have predicted that graphene could one day replace silicon – which is the current material of choice for transistors.  It could also yield incredibly strong, flexible and stable materials and find applications in transparent touch screens or solar cells.  Our European office, EOARD, has aggressively followed up on this program, as have many others within the DoD research community.

Stopping Light and Restarting it Again!

Dr. Lene Hau, Mallinckrodt professor of physics and applied physics at Harvard University, and her co-researchers, Dr. Naomi S. Ginsberg and Dr. Sean R. Garner, stopped and extinguished a light pulse in a tiny, supercooled sodium cloud called a Bose Einstein Condensate, and then brought the light pulse back into existence in another atom cloud in a separate location.

The information inside the light pulse was transferred from the first to the second cloud by converting the light pulse into a travelling matter wave, a small atom pulse that was a perfect matter copy of the extinguished light pulse. After the matter wave entered the second cloud, the atoms there worked together to restore the original light pulse.

Currently, scientists and engineers working in optical networks and quantum cryptography are only able to store an optical signal, but Hau’s work will enable them to have a greater degree of control over quantum processing than ever before.
Watch the video to see how it was done!