Week in Review: 8/13/17 – 8/19/17

August 17, 2017

SPOILER ALERT: Computer Simulations Provide Preview of Upcoming Eclipse

A research team from Predictive Science Inc. (PSI) used the Stampede2 supercomputer at The University of Texas at Austin’s Texas Advanced Computing Center (TACC) to forecast the corona of the sun during the upcoming eclipse. The findings shed light on what the eclipse of the sun might look like Aug. 21 when it will be visible across much of the U.S., tracing a 70-mile-wide band across 14 states.
https://news.utexas.edu/2017/08/17/computer-simulations-preview-eclipse

August 16, 2017

Freeze-dried foam soaks up carbon dioxide

Rice University materials scientists have created a light foam from two-dimensional sheets of hexagonal-boron nitride (h-BN) that absorbs carbon dioxide.

They discovered freeze-drying h-BN turned it into a macro-scale foam that disintegrates in liquids. But adding a bit of polyvinyl alcohol (PVA) into the mix transformed it into a far more robust and useful material.

The foam is highly porous and its properties can be tuned for use in air filters and as gas absorption materials, according to researchers in the Rice lab of materials scientist Pulickel Ajayan.
http://news.rice.edu/2017/08/16/boron-nitride-foam-soaks-up-carbon-dioxide/

August 15, 2017

Restoring loss: Bio-inspired materials give boost to regenerative medicine

What if one day, we could teach our bodies to self-heal like a lizard’s tail, and make severe injury or disease no more threatening than a paper cut? Or heal tissues by coaxing cells to multiply, repair or replace damaged regions in loved ones whose lives have been ravaged by stroke, Alzheimer’s or Parkinson’s disease? Such is the vision, promise and excitement in the burgeoning field of regenerative medicine, now a major ASU initiative to boost 21st-century medical research discoveries.

ASU Biodesign Institute researcher Nick Stephanopoulos is one of several rising stars in regenerative medicine. In 2015, Stephanopoulos, along with Alex Green and Jeremy Mills, were recruited to the Biodesign Institute’s Center for Molecular Design and Biomimetics (CMDB), directed by Hao Yan, a world-recognized leader in nanotechnology.
https://campus.asu.edu/content/restoring-loss-bio-inspired-materials-give-boost-regenerative-medicine-0

August 14, 2017

‘Organismic learning’ mimics some aspects of human thought

A new computing technology called “organismoids” mimics some aspects of human thought by learning how to forget unimportant memories while retaining more vital ones.

“The human brain is capable of continuous lifelong learning,” said Kaushik Roy, Purdue University’s Edward G. Tiedemann Jr. Distinguished Professor of Electrical and Computer Engineering. “And it does this partially by forgetting some information that is not critical. I learn slowly, but I keep forgetting other things along the way, so there is a graceful degradation in my accuracy of detecting things that are old. What we are trying to do is mimic that behavior of the brain to a certain extent, to create computers that not only learn new information but that also learn what to forget.”

The work was performed by researchers at Purdue, Rutgers University, the Massachusetts Institute of Technology, Brookhaven National Laboratory and Argonne National Laboratory.
https://www.purdue.edu/newsroom/releases/2017/Q3/organismic-learning-mimics-some-aspects-of-human-thought.html

2-faced 2-D material is a first at Rice

Like a sandwich with wheat on the bottom and rye on the top, Rice University scientists have cooked up a tasty new twist on two-dimensional materials.

The Rice laboratory of materials scientist Jun Lou has made a semiconducting transition-metal dichalcogenide (TMD) that starts as a monolayer of molybdenum diselenide. They then strip the top layer of the lattice and replace precisely half the selenium atoms with sulfur.

The new material they call Janus sulfur molybdenum selenium (SMoSe) has a crystalline construction the researchers said can host an intrinsic electric field and that also shows promise for catalytic production of hydrogen.
http://news.rice.edu/2017/08/14/2-faced-2-d-material-is-a-first-at-rice/