Week in Review: 9/17/17 – 9/23/17

Technique spots warning signs of extreme events

Now engineers at MIT have devised a framework for identifying key patterns that precede an extreme event. The framework can be applied to a wide range of complicated, multidimensional systems to pick out the warning signs that are most likely to occur in the real world.

September 20, 2017

AFRL selects fellows from Materials and Manufacturing Directorate

Two scientists from the Materials and Manufacturing Directorate were recently chosen as Air Force Research Laboratory Fellows. Dr. Allan Katz, High Temperature Silicon-Carbide-Fiber-Reinforced Silicon Carbide Composites for Turbines program manager and Dr. Ajit Roy, Computational Nanomaterials principal engineer and group lead were two of six scientists selected as AFRL Fellows.

September 19, 2017

Squeezing light into infinitesimally thin lines

Researchers have demonstrated a new mode of electromagnetic wave, called a “line wave,” which travels along an infinitesimally thin line along the interface between two adjacent surfaces with different electromagnetic properties. The scientists expect that line waves will be useful for the efficient routing and concentration of electromagnetic energy, such as light, with potential applications in areas ranging from integrated photonics, sensing and quantum processes to future vacuum electronics.

The Goldilocks Wing: Popular Airfoil Design Defies Aerodynamic Standards

Since the Wright brothers took to the sky in 1903 aboard their notorious, dual-winged biplane, we have seen countless wing designs of various shapes and sizes used on aircraft. Each of these wings have a particular cross-section design, known as an airfoil, that follows the textbook standard relationship between lift and the angle of attack. However, Professor Geoff Spedding, of USC Viterbi’s Aerospace and Mechanical Engineering Department, found otherwise while performing careful experiments in the same standard conditions, but at a smaller scale. His results highlight the disparity between experiments, computations and aerodynamic models and how much work still needs to be done before reaching agreement as designers endeavor on small-scale flight – the next generation of drones.

September 18, 2017

Thin, flexible device could provide efficient cooling for mobile electronics – or people

Engineers and scientists from the UCLA Henry Samueli School of Engineering and Applied Science and SRI International, a nonprofit research and development organization based in Menlo Park, California, have created a thin flexible device that could keep smartphones and laptop computers cool and prevent overheating.