The power of one small basic research investment

By Molly Lachance and Brianna Hodges, Air Force Office of Scientific Research

A small basic research investment by the Air Force Research Laboratory, in partnership with the National Science Foundation, has created a community of origami researchers who in six short years have transitioned to working on applied technologies for the Air Force.

The story begins in 2012 when AFRL’s Air Force Office of Scientific Research partnered with NSF to develop the Origami Design for Integration of Self-assembling Systems for Engineering Innovation program. Over the years, NSF and AFOSR have invested nearly $28M in this program with the goal of creating the mathematical and material foundation for self-folding origami systems and commercializing the concepts. The origami research community received a big boost when Congress decided to include a $5 million congressional interest item in the fiscal year 2017 budget and made plans for a $4.8 million CII in fiscal year 2018.

AFOSR issued the funding opportunity announcement for the first CII and a team from Georgia Institute of Technology and Florida International University won in open competition. Concurrently, AFRL began taking notice of origami basic research as a promising concept for transition to Air Force applications and provided an additional $20 million of funding to a number of small teams around the lab. AFOSR stayed in the mix by managing that investment and creating a venue for university and AFRL researchers to collaborate and share knowledge.

Now six years after its initial investment, AFRL researchers are developing origami antennas deployable in space. This type of technology requires a multidisciplinary approach, leveraging the knowledge of original and new university partners as well as the expertise of AFRL experts from the Materials and Manufacturing Directorate, Aerospace Systems Directorate, Sensors Directorate, and Space Vehicles Directorate.

“We’re interested in really compelling scientific and engineering challenges that can lead to applications in the future,” said Ken Goretta, AFOSR program officer. “Compelling science and Air Force relevance drive us to invest, and origami antennas have that.”

This community met on September 13 for a workshop on origami antennas and electromagnetics and September 14 for a kick-off meeting for the new Center for Physically Reconfigurable and Deployable Multifunctional Antennas located at Florida International University.

The goal of the center, which celebrated its grand opening with a ribbon cutting September 15, is to develop innovative and advanced origami-based antenna technologies for next-generation Air Force and Department of Defense system.

“We want to use the center as an opportunity to create and train a diverse workforce with state of the art training and antenna programs for our nation and create a pipeline for very well trained engineers that they can go in work in the government” said Dr. Stavros Georgakopoulos, TAC Center Director and Inventor, Professor of Electrical and Computer Engineering at FIU.

Georgakopoulos expresses he never imagined after being funded initially that his grant co-funded by AFOSR would be so transformative for his career. “The Air Force Research Lab have a very strong presence. We are going to collaborate and we are going to use some of their expertise and we are going to do more interdisciplinary type of work. So we are very excited.”

For more information about the history and intent of project as well as its significance to Air force and the Department of Defense, visit https://tac.fiu.edu/.

This story is an example of how AFRL creates asymmetric S&T advantage for the Air Force by making small strategic investments that create communities and conversations with far reaching scientific impact.

https://www.wpafb.af.mil/News/Article-Display/Article/1659730/the-power-of-one-small-basic-research-investment/

A Week in Review: 4/6/14 – 4/12/14

April 6, 2014

Self-Assembled Silver Superlattices Create Molecular Machines with Hydrogen-Bond “Hinges” and Moving “Gears”
A combined computational and experimental study of self-assembled silver-based structures known as superlattices has revealed an unusual and unexpected behavior: arrays of gear-like molecular-scale machines that rotate in unison when pressure is applied to them.
http://www.research.gatech.edu/news/self-assembled-silver-superlattices-create-molecular-machines-hydrogen-bond-%E2%80%9Chinges%E2%80%9D-and-moving

April 7, 2014

Computing’s invisible challenge
Northeastern University assistant professor of electrical and computer engineering Ningfang Mi recently learned she was one of 42 early-​​career researchers to win a Young Investigator Award from the Air Force Office of Scientific Research. She plans to use award to figure out a better way to manage the vast amount of information sharing that takes place online—and push that mas­sive technical challenge even further into the background for end users.
http://www.northeastern.edu/news/2014/04/computings-invisible-challenge/

Rebar technique strengthens case for graphene
Carbon nanotubes are reinforcing bars that make two-dimensional graphene much easier to handles in a new hybrid material grown by researchers at Rice University. The Rice lab of chemist James Tour set nanotubes into graphene in a way that not only mimics how steel rebar is used in concrete but also preserves and even improves the electrical and mechanical qualities of both.
http://news.rice.edu/2014/04/07/rebar-technique-strengthens-case-for-graphene/

April 9, 2014

New ‘switch’ could power quantum computing
Using a laser to place individual rubidium atoms near the surface of a lattice of light, scientists at MIT and Harvard University have developed a new method for connecting particles — one that could help in the development of powerful quantum computing systems.
http://newsoffice.mit.edu/2014/new-switch-could-power-quantum-computing-0409

April 10, 2014

Fruit flies, fighter jets use similar nimble tactics when under attack
Researchers at the University of Washington used an array of high-speed video cameras operating at 7,500 frames a second to capture the wing and body motion of flies after they encountered a looming image of an approaching predator.
http://www.washington.edu/news/2014/04/10/fruit-flies-fighter-jets-use-similar-nimble-tactics-when-under-attack/

April 11, 2014

Air Force R&D group experiments with Google Glass
The BATMAN researchers are experimenting with many probable battlefield scenarios, including how Google Glass could be used by ground forces to help aircraft acquire targets or how it could work as a communications device between combat controllers and overhead aircraft.
http://www.airforcetimes.com/article/20140411/NEWS04/304110040/Air-Force-R-D-group-experiments-Google-Glass

A Week in Review: 3/9/14 – 3/15/14

March 10, 2014

Professor Receives Funding to Design Materials Inspired by Bone
Dr. Majid Minary, an assistant professor of mechanical engineering at UT Dallas, has received funding to design high-performance materials inspired by bone.
http://www.utdallas.edu/news/2014/3/6-28931_Professor-Receives-Funding-to-Design-Materials-Ins_story-wide.html

March 14, 2014

Department of Defense Supports Kottos’ Symmetric Optics Research
The award will support Kottos’ study on “PT-Summetric Optical Materials” through April 2017. During this time, Kottos will develop a theoretical framework for Parity-Time (PT) Symmetric Optics using mainly polymetric platforms. Additionally, efforts will be made towards identifying other platforms/areas where PT-Symmetric ideas can be applied. Kottos will be coordinating his research with faculty at the University of Central Florida, Rice University, Georgia Institute of Technology and University of Utah.
http://newsletter.blogs.wesleyan.edu/2014/03/14/kottosmurigrant/

A Week in Review: 2/2/14 – 2/8/14

February 3, 2014

UC Researchers at Ground Control in Launching the Fastest Plane of the Future
Randy Allemang, a UC professor of mechanical engineering and director of the Structural Dynamics Research Lab in the UC College of Engineering and Applied Science (CEAS), will present a validation metric that involves principal component analysis (PCA) decomposition of simulation and test data to measure the uncertainty in how well the models match with measured data, which will ultimately determine the success in approaching how such a plane could be built. That 25-year exploratory project is led by the U.S. Air Force.
http://www.uc.edu/news/NR.aspx?id=19166

Diamond film possible without the pressure
Now researchers at Rice University and in Russia have calculated a “phase diagram” for the creation of diamane. The diagram is a road map. It lays out the conditions – temperature, pressure and other factors – that would be necessary to turn stacked sheets of graphene into a flawless diamond lattice.
http://news.rice.edu/2014/02/03/no-pressure-needed-for-diamond-film/

February 4, 2014

Fruit flies – fermented-fruit connoisseurs – are relentless party crashers
That fruit fly joining you just moments after you poured that first glass of cabernet, has just used its poppy-seed-sized brain to conduct a finely-choreographed search, one that’s been described for the first time by researchers at the University of Washington.
http://www.washington.edu/news/2014/02/04/fruit-flies-fermented-fruit-connoisseurs-are-relentless-party-crashers/

February 5, 2014

Ballistic Transport in Graphene Suggests New Type of Electronic Device
 “This work shows that we can control graphene electrons in very different ways because the properties are really exceptional,” said Walt de Heer, a Regent’s professor in the School of Physics at the Georgia Institute of Technology. “This could result in a new class of coherent electronic devices based on room temperature ballistic transport in graphene. Such devices would be very different from what we make today in silicon.”
http://www.news.gatech.edu/2014/02/05/ballistic-transport-graphene-suggests-new-type-electronic-device