Bio-Inspired Flight — Who Is Air Force Basic Research


Technological advances are constantly increasing human potential for developing very small things. For the US Air Force this means revolutionary designs in future air vehicles providing war fighters with tools that enhance situational awareness and the capacity to engage rapidly, precisely and with minimal collateral damage. When it comes to improving flight mechanics in these vehicles what better place to look for inspiration than bats, birds or bugs? These natural flyers have been perfecting their flight techniques for millions of years.

In this video, meet the researchers AFOSR is funding to develop designs for flight vehicles that will have revolutionary impacts on the future Air Force.

Basic Research at AFOSR: Ensuring Our National Security & Making Our Lives Easier


What is Basic Research?
Basic research is the foundation of all scientific and engineering discovery and progress.  It is what leads to new inventions and concepts—many of which are revolutionary.  And the great thing about basic research is the mystery of it: while basic research investigators may start off trying to prove a particular theory, many times they end up going off in an entirely new direction, or their results are ultimately employed in a dramatically different way than they initially envisioned.

Where We Came From & Why Basic Research is Important
Dr. Vannevar Bush, the Director of the Office of Scientific Research and Development during World War II, was the first to formally address the issue of post-war defense research. His July 1945 report, Science, the Endless Frontier, clearly made the case for a civilian-based, and civilian controlled, research program. The leadership of the soon to be independent United States Air Force was also committed to a civilian, or extramural program, but one under their control, and followed through by establishing its own research arm in February 1948. The U.S. Army and Navy established their research organizations as well.  The Air Force, recognizing the importance of basic research, established AFOSR in 1951, dedicated specifically to mining the basic research talent in U.S. universities and industry laboratories.  Overseas offices were subsequently established to identify promising foreign research accomplishments.

How Basic Research Impacts You
One of the primary investigators whom we fund recently characterized the long term successful results of what we do as “the stealth utility of innovation.”  An example to make the point: as a laser expert, he noted that it was military basic research that funded the invention of the laser, beginning in 1951.  And he pointed out, that if all the lasers in the world stop working, the world would come to a stop as well. Lasers are at the heart of our time keeping, our transportation network (the Global Positioning System), our energy system, and in entertainment, finances and electronics applications. This singular “stealth utility,” that regulates much of our state-of-the-art technology, is the result of defense-funded basic research and is taken for granted by everyone.  It exists because AFOSR and our sister service organizations made the research possible—not only for our mutual defense but a wide variety of beneficial applications for society in general. In future posts we will discuss the reach and application of many of these “stealthy” discoveries that not only ensure our security, but work invisibly in the background of our society, making our lives a lot easier: from lasers to computers, from nanotechnology to aerospace, from bio-inspired devices to holographic displays, and what’s in store for the future as well. What technology could you not live without?

An Interview with Dr. John Luginsland: The Plasma & Electro-Energetic Physics Program Manager


We had a chance to sit down with Dr. Luginsland recently to learn about his program and the cool physics research he’s funding. As the manager for the Plasma & Electro- Energetic Physics Program, he oversees a diverse portfolio of AFOSR funded programs and finds the best of the best to fund.

Dr. John Luginsland, AFOSR Program Manager for Plasma & Electro Energetic Physics Position: AFOSR Program Manager
Program: Plasma & Electro-Energetic Physics
Years with AFOSR:  2 years, 7 Months
Society Memberships: The Institute of Electrical and Electronics Engineers (IEEE) – Nuclear and Plasma Science Society, American Physical Society  (APS) – Division of Plasma Physics, Society of Industrial and Applied Mathematics
Favorite Websites: Slashdot, MITs Technology Review, APS – Physics 
Presentations: Video of Dr. Luginsland’s Spring Review presentation.

What brought you to AFOSR?
I’ve been with AFOSR since December of 2009 but I like to say, “I’ve always worked for AFOSR.” Because actually my graduate work at the University of Michigan was funded by AFOSR. Then AFOSR funded my post doc through the National Research Council (NRC) post doc program at the Air Force Research Laboratory based at Kirtland Air Force Base. After that, I transitioned to a staff member of the Directed Energy Directorate of AFRL and worked in a lab that received basic research funding for a number of years from AFOSR. Later I went to industry for a number of years and in 2009 when my predecessor at AFOSR retired, the AFOSR Director at that time, Dr. Brendan Godfrey suggested I apply for the job and here I am.

How do you think AFOSR is different from other basic research organizations?
What I really like about AFOSR is that there’s actually a real tension between two missions. First and foremost, we’re a basic science organization so we find the best science we can and fund it. At the same time, we’re a mission research organization because we work for the Air Force so we have to simultaneously look for the very best science we can fund and also answer the mail, if you will, for the Air Force in terms of technology that will help the Air Force going forward. And I think that actually having to answer both of those questions simultaneously gives a degree of focus that the other funding agencies don’t have.

You’re the Plasma and Electro-Energetic Program Manager. What is plasma?
Plasma is the fourth state of matter: if you heat a solid you get a liquid, if you heat a liquid you get a gas, if you heat a gas you get plasma. Actually plasma is the most ubiquitous state of matter in the entire universe – 99% of the universe is in the plasma state, just not the part we live in here on earth.

How does electro-energetics fit in?
It takes energy to get into the plasma state, so often times we do that with electrical energy to go from the solid, to the liquid, to the gas, to the plasma.

My program is fundamentally looking at how do we make plasmas, how do we make them in energy efficient ways and then once you got something in the plasma state what can you uniquely do in that state that you can’t do in other areas.

Could you give us examples of how your program is benefiting the Air Force?
One major area that we fund is called directed energy technology. Plasma will let you access or make electromagnetic waves. So one big thing that we do is plasma physics that leads to radar sources and other sources of coherent radiation. Really high-powered electromagnetic sources actually create a plasma and then draws energy out of that plasma to make electromagnetic waves for radar – picking up airplanes, for doing electronic warfare, doing high-powered, long-range communications. All of that is based to some degree on plasma physics.

The other big exciting thing that we’re working on right now is trying to find good ways to decontaminate water. So as it turns out Fairfax County [VA] has two facilities that produce ozone and they do it through a chemical means. They do this at a city-block-sized facility and it actually is what purifies the water that we drink in Fairfax County. What we’re trying to do is actually shrink that block-sized facility into something that’s basically truck-sized and we’re using a plasma to do that. And this plasma, which is energetic in a way that chemicals aren’t, lets you make ozone much more efficiently and thereby use that ozone to clean up water and things like that. So you can imagine this is portable and could go into a forward operating base scenario, whereas the block-sized monstrosity can’t.

What direction do you see your program going in in the future?
The really exciting area that I think is starting to happen is that we’re starting to look at very small plasmas and what happens then is we start adding not just classical physics that we’re used to in the plasma physics community but start really pulling in quantum mechanics. That changes the physics associated with the plasmas and actually makes them quite a bit easier to make. So it takes less energy to make but we’re still getting all the benefits of plasma but it’s not requiring a block-sized thing to do it. We’re starting to do it in very small packages.

What is your process and timeline for choosing proposals?
So I always think it’s good for people to email me and have a quick email discussion sort of at the beginning of the calendar year after they look at the Broad Agency Announcement for details about what we’re looking to fund.

I look to get white papers in the late spring early summer say the May/June time period. You can submit them online.

White papers should be three to five pages long. I’d like there to be at least an estimate of the level of effort but for the most part what I’m looking for is what the unique science is you’re trying to do. What’s unique? What are you bringing to the portfolio that hasn’t been there before?

And then after that, I typically try and give feedback within a month.

I like to receive full proposals in the late summer – August/September – to try to get them in before the fiscal year rolls over in October.

I make funding decisions very early in the fiscal year – October/November.

Have a question for Dr. Luginsland? Please leave it in the comments below.

Nanotechnology: Moving Beyond Small Thinking


The recently published National Geographic special issue titled “100 Scientific Discoveries That Changed the World,” leads off with a research program that began in 1997 when we funded a Northwestern University researcher by the name of Chad Mirkin. AFOSR took a chance on a process called Dip-Pen Nanolithography (DPN), and what Dr. Mirkin himself noted, was “a far out idea and a paradigm shift in scanning probe microscopy,” but indeed, proved to be an idea that changed the world.

Highlighted in the Journal of Science, January 1999, DPN is a technology that builds nanoscale structures and patterns by drawing molecules directly onto a substrate. This process was achieved by employing an Atomic Force Microscope (AFM), the tip of which has the innate capability to precisely place items and draw lines at the nanoscale level. The AFM was basically an extremely small paint brush. Mirkin’s fundamental contribution was recognizing that it could be used to print structures on a surface through materials, rather than through an energy delivery process–the latter being the approach taken by all previous researchers.

DPN has led to the development of powerful new nanofabrication tools, ways of miniaturizing gene chips and pharmaceutical screening devices, methods for making and repairing photomasks used in the microelectronics industry, and high-throughput methods for discovering structures important in biology, medicine, and catalysis. Since 1997 Dr. Mirkin has authored over 480 manuscripts, holds over 440 patents and applications, and is the founder of four companies, which specialize in commercializing nanotechnology applications.

Professor Chad Mirkin recently spoke at two AFOSR events on the following topics A Chemist’s Approach to Nanofabrication: Towards a “Desktop Fab” and Nanotechnology: Moving Beyond Small Thinking.

A Chemist’s Approach to Nanofabrication: Towards a “Desktop Fab”

Nanotechnology: Moving Beyond Small Thinking

Week in Review: 7/10/16 – 7/16/16

July 14, 2016

ASU researcher controls multiple drones with his mind

An ASU researcher has developed a system to control multiple robots — potentially hundreds — with the human brain. “This is something nobody has done before.”

‘Rivet graphene’ proves its mettle

Nanoscale “rivets” give graphene qualities that may speed the wonder material’s adoption in products like flexible, transparent electronics, according to researchers at Rice University. The Rice lab of chemist James Tour reported the creation of “rivet graphene,” two-dimensional carbon that incorporates carbon nanotubes for strength and carbon spheres that encase iron nanoparticles, which enhance both the material’s portability and its electronic properties.

July 13, 2016

Professor Receives Grant from the Air Force Young Investigator Research Program

Gnanamanickam is the first Embry-Riddle professor to receive an Air Force Young Investigator research grant. His proposal to study the fluid dynamics of turbulence was one of 56 projects funded out of over 265 that were submitted by university researchers across the country for fiscal year 2017.

July 13, 2016

Smart material getting smarter at WSU

WSU researchers have developed a new multifunctional smart material which combines several qualities of other materials, allowing it to change shape under heat or light and self-heal.

July 12, 2016

DNA Origami Lights Up a Microscopic Glowing Van Gogh

Using folded DNA to precisely place glowing molecules within microscopic light resonators, researchers at Caltech have created one of the world’s smallest reproductions of Vincent van Gogh’s The Starry Night. The reproduction and the technique used to create it are described in a paper published in the advance online edition of the journal Nature on July 11.

July 11, 2016

Supercomputers fire lasers to shoot gamma ray beam

Supercomputer simulations have shown scientists a new way to generate controlled beam of gamma rays from lasers. Nearly one million CPU hours on Stampede and Lonestar HPC systems were needed for the particle-in-cell simulation. The Texas Petawatt Laser will use the simulations to guide experimental verification later in 2016. Gamma ray production would make possible basic science research and benefit society through brain imaging, cancer therapy, and anti-terrorist cargo scanning.

Week in Review: 6/26/16 – 7/2/16

June 28, 2016

New mid-infrared laser system could detect atmospheric chemicals

Researchers at MIT and elsewhere have found a new way of using mid-infrared lasers to turn regions of molecules in the open air into glowing filaments of electrically charged gas, or plasma. The new method could make it possible to carry out remote environmental monitoring to detect a wide range of chemicals with high sensitivity.

Week in Review: 6/19/16 – 6/25/16

June 21, 2016

Game-changing computational approach takes the guesswork out of materials design

By simulating substances inside the silicon brains of powerful computers, University of Wisconsin-Madison engineers are finding ways to accelerate the arduous process of making new materials. And using this approach, they identified a promising candidate compound that could be used in next-generation vacuum electronic devices for long-distance communications and thermionic energy converters. Led by Dane Morgan, the Harvey D. Spangler Professor in materials science and engineering at UW-Madison, the researchers published details of their advance in the 24 May, 2016, online edition of the journal Advanced Functional Materials.

June 21, 2016

Making Computers Reason and Learn by Analogy

Northwestern Engineering’s Ken Forbus is closing the gap between humans and machines. Using cognitive science theories, Forbus and his collaborators have developed a model that could give computers the ability to reason more like humans and even make moral decisions. Called the structure-mapping engine (SME), the new model is capable of analogical problem solving, including capturing the way humans spontaneously use analogies between situations to solve moral dilemmas.

New Exciting Opportunity to Partner with NASA Scientists and use Selected NASA’s Wind Tunnel to Carry Out Fundamental Research in High-Speed Aerothermodynamics


NASA and AFOSR are launching a pilot program whereby grant proposers can partner with one or more NASA researchers and/or propose to use a specific NASA wind tunnel. The use of the wind tunnels would represent minimal extra cost to the proposal as normal test operations will be conducted at no charge. The grant proposers would engage NASA during proposal development to obtain a cost estimate for the test activity envisioned. If awarded, the grant proposer would enter into a Space Act Agreement with NASA as the partnering mechanism. The specific wind tunnels available for this partnership are the Langley Research Center Aerothermodynamics Laboratory. Information on the wind tunnel facilities can be found on the following website:

We envision the partnership with NASA researchers to take several forms. For example, a project could have Ph.D. students co-located with NASA researchers during a few months in the term of the grant and have periodic remote mentorship the rest of the time of the grant. Another option is to have NASA researchers to be a part of the Ph.D. defense committee for a student with informal mentorship all throughout the life of the grant. A third option would for NASA researchers to carry out investigations complementary to the grant objectives (computations and/or experiments). Expenses associated with students’ travel to NASA facilities need to be included in the grant budget.

If a proposed project would like to use one of the above wind tunnels, please include an explanation of how the use of the tunnel would enhance the objectives of the proposal and why such objectives can’t be achieved in university facilities. Also, it would preferred that a substantial portion of the overall grant objectives (experimental and computational) are carried out prior to using a NASA facility and the experiments carried out at NASA represent the final validation of the theories or hypothesis developed during the course of the grant.

For this pilot program, the research topics remain the same as stated in the latest BAA for AFOSR on

For more details email both and