Bio-Inspired Flight — Who Is Air Force Basic Research

Featured

Technological advances are constantly increasing human potential for developing very small things. For the US Air Force this means revolutionary designs in future air vehicles providing war fighters with tools that enhance situational awareness and the capacity to engage rapidly, precisely and with minimal collateral damage. When it comes to improving flight mechanics in these vehicles what better place to look for inspiration than bats, birds or bugs? These natural flyers have been perfecting their flight techniques for millions of years.

In this video, meet the researchers AFOSR is funding to develop designs for flight vehicles that will have revolutionary impacts on the future Air Force.

Basic Research at AFOSR: Ensuring Our National Security & Making Our Lives Easier

Featured

What is Basic Research?
Basic research is the foundation of all scientific and engineering discovery and progress.  It is what leads to new inventions and concepts—many of which are revolutionary.  And the great thing about basic research is the mystery of it: while basic research investigators may start off trying to prove a particular theory, many times they end up going off in an entirely new direction, or their results are ultimately employed in a dramatically different way than they initially envisioned.

Where We Came From & Why Basic Research is Important
Dr. Vannevar Bush, the Director of the Office of Scientific Research and Development during World War II, was the first to formally address the issue of post-war defense research. His July 1945 report, Science, the Endless Frontier, clearly made the case for a civilian-based, and civilian controlled, research program. The leadership of the soon to be independent United States Air Force was also committed to a civilian, or extramural program, but one under their control, and followed through by establishing its own research arm in February 1948. The U.S. Army and Navy established their research organizations as well.  The Air Force, recognizing the importance of basic research, established AFOSR in 1951, dedicated specifically to mining the basic research talent in U.S. universities and industry laboratories.  Overseas offices were subsequently established to identify promising foreign research accomplishments.

How Basic Research Impacts You
One of the primary investigators whom we fund recently characterized the long term successful results of what we do as “the stealth utility of innovation.”  An example to make the point: as a laser expert, he noted that it was military basic research that funded the invention of the laser, beginning in 1951.  And he pointed out, that if all the lasers in the world stop working, the world would come to a stop as well. Lasers are at the heart of our time keeping, our transportation network (the Global Positioning System), our energy system, and in entertainment, finances and electronics applications. This singular “stealth utility,” that regulates much of our state-of-the-art technology, is the result of defense-funded basic research and is taken for granted by everyone.  It exists because AFOSR and our sister service organizations made the research possible—not only for our mutual defense but a wide variety of beneficial applications for society in general. In future posts we will discuss the reach and application of many of these “stealthy” discoveries that not only ensure our security, but work invisibly in the background of our society, making our lives a lot easier: from lasers to computers, from nanotechnology to aerospace, from bio-inspired devices to holographic displays, and what’s in store for the future as well. What technology could you not live without?

An Interview with Dr. John Luginsland: The Plasma & Electro-Energetic Physics Program Manager

Featured

We had a chance to sit down with Dr. Luginsland recently to learn about his program and the cool physics research he’s funding. As the manager for the Plasma & Electro- Energetic Physics Program, he oversees a diverse portfolio of AFOSR funded programs and finds the best of the best to fund.

Dr. John Luginsland, AFOSR Program Manager for Plasma & Electro Energetic Physics Position: AFOSR Program Manager
Program: Plasma & Electro-Energetic Physics
Years with AFOSR:  2 years, 7 Months
Society Memberships: The Institute of Electrical and Electronics Engineers (IEEE) – Nuclear and Plasma Science Society, American Physical Society  (APS) – Division of Plasma Physics, Society of Industrial and Applied Mathematics
Favorite Websites: Slashdot, MITs Technology Review, APS – Physics 
Presentations: Video of Dr. Luginsland’s Spring Review presentation.

What brought you to AFOSR?
I’ve been with AFOSR since December of 2009 but I like to say, “I’ve always worked for AFOSR.” Because actually my graduate work at the University of Michigan was funded by AFOSR. Then AFOSR funded my post doc through the National Research Council (NRC) post doc program at the Air Force Research Laboratory based at Kirtland Air Force Base. After that, I transitioned to a staff member of the Directed Energy Directorate of AFRL and worked in a lab that received basic research funding for a number of years from AFOSR. Later I went to industry for a number of years and in 2009 when my predecessor at AFOSR retired, the AFOSR Director at that time, Dr. Brendan Godfrey suggested I apply for the job and here I am.

How do you think AFOSR is different from other basic research organizations?
What I really like about AFOSR is that there’s actually a real tension between two missions. First and foremost, we’re a basic science organization so we find the best science we can and fund it. At the same time, we’re a mission research organization because we work for the Air Force so we have to simultaneously look for the very best science we can fund and also answer the mail, if you will, for the Air Force in terms of technology that will help the Air Force going forward. And I think that actually having to answer both of those questions simultaneously gives a degree of focus that the other funding agencies don’t have.

You’re the Plasma and Electro-Energetic Program Manager. What is plasma?
Plasma is the fourth state of matter: if you heat a solid you get a liquid, if you heat a liquid you get a gas, if you heat a gas you get plasma. Actually plasma is the most ubiquitous state of matter in the entire universe – 99% of the universe is in the plasma state, just not the part we live in here on earth.

How does electro-energetics fit in?
It takes energy to get into the plasma state, so often times we do that with electrical energy to go from the solid, to the liquid, to the gas, to the plasma.

My program is fundamentally looking at how do we make plasmas, how do we make them in energy efficient ways and then once you got something in the plasma state what can you uniquely do in that state that you can’t do in other areas.

Could you give us examples of how your program is benefiting the Air Force?
One major area that we fund is called directed energy technology. Plasma will let you access or make electromagnetic waves. So one big thing that we do is plasma physics that leads to radar sources and other sources of coherent radiation. Really high-powered electromagnetic sources actually create a plasma and then draws energy out of that plasma to make electromagnetic waves for radar – picking up airplanes, for doing electronic warfare, doing high-powered, long-range communications. All of that is based to some degree on plasma physics.

The other big exciting thing that we’re working on right now is trying to find good ways to decontaminate water. So as it turns out Fairfax County [VA] has two facilities that produce ozone and they do it through a chemical means. They do this at a city-block-sized facility and it actually is what purifies the water that we drink in Fairfax County. What we’re trying to do is actually shrink that block-sized facility into something that’s basically truck-sized and we’re using a plasma to do that. And this plasma, which is energetic in a way that chemicals aren’t, lets you make ozone much more efficiently and thereby use that ozone to clean up water and things like that. So you can imagine this is portable and could go into a forward operating base scenario, whereas the block-sized monstrosity can’t.

What direction do you see your program going in in the future?
The really exciting area that I think is starting to happen is that we’re starting to look at very small plasmas and what happens then is we start adding not just classical physics that we’re used to in the plasma physics community but start really pulling in quantum mechanics. That changes the physics associated with the plasmas and actually makes them quite a bit easier to make. So it takes less energy to make but we’re still getting all the benefits of plasma but it’s not requiring a block-sized thing to do it. We’re starting to do it in very small packages.

What is your process and timeline for choosing proposals?
So I always think it’s good for people to email me and have a quick email discussion sort of at the beginning of the calendar year after they look at the Broad Agency Announcement for details about what we’re looking to fund.

I look to get white papers in the late spring early summer say the May/June time period. You can submit them online.

White papers should be three to five pages long. I’d like there to be at least an estimate of the level of effort but for the most part what I’m looking for is what the unique science is you’re trying to do. What’s unique? What are you bringing to the portfolio that hasn’t been there before?

And then after that, I typically try and give feedback within a month.

I like to receive full proposals in the late summer – August/September – to try to get them in before the fiscal year rolls over in October.

I make funding decisions very early in the fiscal year – October/November.

Have a question for Dr. Luginsland? Please leave it in the comments below.

Nanotechnology: Moving Beyond Small Thinking

Featured

The recently published National Geographic special issue titled “100 Scientific Discoveries That Changed the World,” leads off with a research program that began in 1997 when we funded a Northwestern University researcher by the name of Chad Mirkin. AFOSR took a chance on a process called Dip-Pen Nanolithography (DPN), and what Dr. Mirkin himself noted, was “a far out idea and a paradigm shift in scanning probe microscopy,” but indeed, proved to be an idea that changed the world.

Highlighted in the Journal of Science, January 1999, DPN is a technology that builds nanoscale structures and patterns by drawing molecules directly onto a substrate. This process was achieved by employing an Atomic Force Microscope (AFM), the tip of which has the innate capability to precisely place items and draw lines at the nanoscale level. The AFM was basically an extremely small paint brush. Mirkin’s fundamental contribution was recognizing that it could be used to print structures on a surface through materials, rather than through an energy delivery process–the latter being the approach taken by all previous researchers.

DPN has led to the development of powerful new nanofabrication tools, ways of miniaturizing gene chips and pharmaceutical screening devices, methods for making and repairing photomasks used in the microelectronics industry, and high-throughput methods for discovering structures important in biology, medicine, and catalysis. Since 1997 Dr. Mirkin has authored over 480 manuscripts, holds over 440 patents and applications, and is the founder of four companies, which specialize in commercializing nanotechnology applications.

Professor Chad Mirkin recently spoke at two AFOSR events on the following topics A Chemist’s Approach to Nanofabrication: Towards a “Desktop Fab” and Nanotechnology: Moving Beyond Small Thinking.

A Chemist’s Approach to Nanofabrication: Towards a “Desktop Fab”

Nanotechnology: Moving Beyond Small Thinking

Week in Review: 9/17/17 – 9/23/17

Technique spots warning signs of extreme events

Now engineers at MIT have devised a framework for identifying key patterns that precede an extreme event. The framework can be applied to a wide range of complicated, multidimensional systems to pick out the warning signs that are most likely to occur in the real world.

September 20, 2017

AFRL selects fellows from Materials and Manufacturing Directorate

Two scientists from the Materials and Manufacturing Directorate were recently chosen as Air Force Research Laboratory Fellows. Dr. Allan Katz, High Temperature Silicon-Carbide-Fiber-Reinforced Silicon Carbide Composites for Turbines program manager and Dr. Ajit Roy, Computational Nanomaterials principal engineer and group lead were two of six scientists selected as AFRL Fellows.

September 19, 2017

Squeezing light into infinitesimally thin lines

Researchers have demonstrated a new mode of electromagnetic wave, called a “line wave,” which travels along an infinitesimally thin line along the interface between two adjacent surfaces with different electromagnetic properties. The scientists expect that line waves will be useful for the efficient routing and concentration of electromagnetic energy, such as light, with potential applications in areas ranging from integrated photonics, sensing and quantum processes to future vacuum electronics.

The Goldilocks Wing: Popular Airfoil Design Defies Aerodynamic Standards

Since the Wright brothers took to the sky in 1903 aboard their notorious, dual-winged biplane, we have seen countless wing designs of various shapes and sizes used on aircraft. Each of these wings have a particular cross-section design, known as an airfoil, that follows the textbook standard relationship between lift and the angle of attack. However, Professor Geoff Spedding, of USC Viterbi’s Aerospace and Mechanical Engineering Department, found otherwise while performing careful experiments in the same standard conditions, but at a smaller scale. His results highlight the disparity between experiments, computations and aerodynamic models and how much work still needs to be done before reaching agreement as designers endeavor on small-scale flight – the next generation of drones.

September 18, 2017

Thin, flexible device could provide efficient cooling for mobile electronics – or people

Engineers and scientists from the UCLA Henry Samueli School of Engineering and Applied Science and SRI International, a nonprofit research and development organization based in Menlo Park, California, have created a thin flexible device that could keep smartphones and laptop computers cool and prevent overheating.

 

Week in Review: 9/10/17 – 9/16/17

September 14, 2017

Researchers demonstrate broad range, cost-effective infrared lasers for photonic, medical applications

The electronics industry has driven the digital revolution for an unprecedented success based on Si. As a result, there has been a tremendous effort to broaden the reach of Si technology to build integrated optic and photonic circuits. Supported by Air Force Office of Scientific Research (AFOSR) National Aeronautics and Space Administration (NASA) Established Program to Stimulate Competitive Research (EPSCoR), and National Science Foundation (NSF), researchers from a multi-institutional team have demonstrated infrared lasers made of the inexpensive germanium tin (GeSn) alloy grown on silicon (Si) substrates. The laser operation wavelength coverage is from 2 to 3 micron, with the maximum operating temperature reaching 180 Kelvin.

September 11, 2017

First On-Chip Nanoscale Optical Quantum Memory Developed

For the first time, an international team led by engineers at Caltech has developed a computer chip with nanoscale optical quantum memory.

 

Week in Review: 9/10/17 – 9/16/17

September 14, 2017

Researchers demonstrate broad range, cost-effective infrared lasers for photonic, medical applications

The electronics industry has driven the digital revolution for an unprecedented success based on Si. As a result, there has been a tremendous effort to broaden the reach of Si technology to build integrated optic and photonic circuits. Supported by Air Force Office of Scientific Research (AFOSR) National Aeronautics and Space Administration (NASA) Established Program to Stimulate Competitive Research (EPSCoR), and National Science Foundation (NSF), researchers from a multi-institutional team have demonstrated infrared lasers made of the inexpensive germanium tin (GeSn) alloy grown on silicon (Si) substrates. The laser operation wavelength coverage is from 2 to 3 micron, with the maximum operating temperature reaching 180 Kelvin.

September 11, 2017

First On-Chip Nanoscale Optical Quantum Memory Developed

For the first time, an international team led by engineers at Caltech has developed a computer chip with nanoscale optical quantum memory.

 

Week in Review: 9/3/17 – 9/9/17

Decade of work pays off

Since he was a graduate student, Washington University in St. Louis systems engineer Jr-Shin Li has provided specific mathematical information to experimentalists and clinicians who need it to perform high-resolution magnetic resonance applications, such as body MRIs for medical diagnosis or spectroscopy for uncovering protein structures. Now, after more than a decade of work, he has developed a formula that researchers can use to generate that information themselves.
https://source.wustl.edu/2017/09/decade-work-pays-off/

Week in Review: 8/27/17 – 9/2/17

August 31, 2017

SIUE Physicist and Students Explore New Phenomena in the X-ray Regime

Is the whole greater than the sum of its parts? It’s a question that carries deep meaning in quantum mechanics, and one that ignites the theoretical passion of Southern Illinois University Edwardsville’s Edward Ackad, PhD, associate professor of physics in the College of Arts and Sciences.
https://www.siue.edu/news/2017/08/SIUE-Physicist-and-Students-Explore-New-Phenomena-in-the-Xray-Regime.shtml